Stage I-IIIA non-small cell lung cancers (NSCLC) are considered surgically resectable and treated with a combination of surgery and systemic therapy consisting of chemotherapy, immunotherapy and/or precision cancer medicines. Stage I is a cancer that is located in only one lung and has not spread to the adjacent lymph nodes or outside the chest – surgical removal of the cancer results in over 60% of patients surviving without evidence of cancer recurrence within 5 years of treatment. Stage II cancers are located in one lung and may involve lymph nodes on the same side of the chest that do not include lymph nodes in the mediastinum.

Systemic chemotherapy improves survival for patients with stage I – IIIA NSCLC when compared to treatment with surgery alone and is now considered standard of care. Efforts are underway to evaluate newer precision cancer medicines that target cancer causing mutations to further improve the outcome of individuals with early stage NSCLC. The precision cancer medicine Tagrisso improves the outcomes of EGFR mutated NSCLC and patients should ensure NGS-biomarker testing is performed to identify treatable cancer driving mutations.1,2,9,10

The following is a general overview of treatment for stage I-III surgically resectable NSCLC. The information on this website is intended to help educate patients about their treatment options and to facilitate a mutual or shared decision-making process with their treating cancer physician.

Surgery

For patients with NSCLC that is limited to the chest surgical resection is not only an important therapeutic modality, but in many cases, the most effective method of controlling the disease. Patients with stages I-IIIA localized cancer are considered to have early stage disease and are almost always treated with surgery. The following are the types of surgical procedures that may be performed.

Thoracotomy: Thoracotomy is a surgical procedure to open the chest and remove cancerous lung tissue. This surgical procedure is performed under general anesthesia.

Surgical removal of the cancer may be accomplished by removing the entire lung (pneumonectomy), a lobe of the lung (lobectomy) or even a small segment of the lung (segmentectomy). In general, the less lung that is removed, the greater the preservation of lung function and the lower the risk of major side effects from the surgery. On the other hand, if too little lung is removed, there is an increased chance of a local cancer recurrence. Currently, most physicians recommend a lobectomy. A patient’s general overall condition, age and location of the cancer are other factors that may influence the type of surgery performed and the side effects associated with the surgery. Prior to surgery, patients should carefully discuss the risks and benefits of removing the cancer with their surgeon.

When surgery is conducted in patients with early-stage NSCLC, physicians often remove nearby lymph nodes and send them to the laboratory to determine if they contain cancer cells. The number of lymph nodes removed is often based on physician preference. Results from a recent study conducted by researchers in New York indicate that patients with a larger number of sampled lymph nodes may be more accurately staged and receive more appropriate therapy, ultimately leading to improved overall and cancer-free survival. These researchers suggest that 6 or more lymph nodes should be surgically removed and evaluated in all patients with NSCLC undergoing surgery to remove cancer.3

Video-Assisted Thorascopic Surgery (VATS): This is a form of minimally invasive surgery that utilizes a television camera. The advantages of the camera-aided procedures are that smaller incisions can be used and there is no need to cut through a rib, which is necessary for conventional thoracotomy. This results in quicker, less intrusive surgery, with a much smaller scar. However, using these new procedures requires significant skill and a great deal of training. There is less, or at least different, visibility with VATS. If a serious problem arises, VATS can be converted to an open or traditional procedure, creating a small additional risk.

Systemic Therapy: Precision Cancer Medicine, Chemotherapy, and Immunotherapy

Systemic therapy is any treatment directed at destroying cancer cells throughout the body. Some patients with early stage cancer already have small amounts of cancer that have spread outside the lungs. These cancer cells cannot be treated with surgery alone and require systemic treatment to decrease the chance of cancer recurrence. Systemic therapy can be administered after (adjuvant) or before surgery (neoadjuvant).

  • Chemotherapy: Chemotherapy is any treatment involving the use of drugs to kill cancer cells. Cancer chemotherapy may consist of single drugs or combinations of drugs. Adjuvant chemotherapy decreases cancer recurrences and prolongs survival.1,6 Chemotherapy drugs however cannot tell the difference between a cancer cell and a healthy cell. Therefore, chemotherapy often affects the body’s normal tissues and organs, which can result in complications or side effects. In order to more specifically target the cancer and avoid unwanted side effects researchers are increasingly using precision cancer medicines that target specific cancer causing mutations.
  • Precision Cancer Medicines: Through genomic-biomarker testing performed on a biopsy of the cancer or from a blood sample doctors are increasingly able to define the genomic alterations in a cancers DNA that is driving the growth of a specific cancer. Once a genetic abnormality is identified, a precision medicine can be designed to target a specific mutation or other cancer-related change in the DNA programming of the cancer cells. Precision cancer medicine uses targeted drugs and immunotherapies engineered to directly attack the cancer cells with specific abnormalities, leaving normal cells largely unharmed.9,10,11,12,13,14
  • EGFR positive NSCLC: Approximately 10-15% of NSCLC patients in the US and Europe, and 30-40% of patients in Asia have epidermal growth factor receptor – mutated (EGFRm) NSCLC. These patients are particularly sensitive to treatment with precision cancer medicines known as EGFR-tyrosine kinase inhibitors (TKIs) which block the cell-signaling pathways that drive the growth of EGFR expressing lung cancer cells. Tagrisso (osimertinib) is a third-generation, irreversible EGFR-TKI designed to inhibit both EGFR-sensitizing and EGFR T790M-resistance mutations, with clinical activity against CNS metastases.13,14
  • Immunotherapy: Precision immunotherapy treatment of cancer has also progressed considerably over the past few decades and has now become a standard treatment. The immune system is a network of cells, tissues, and biologic substances that defend the body against viruses, bacteria, and cancer. The immune system recognizes cancer cells as foreign and can eliminate them or keep them in check up to a point. Cancer cells are very good at finding ways to avoid immune destruction, however, so the goal of immunotherapy is to help the immune system eliminate cancer cells by either activating the immune system directly or inhibiting the mechanisms of suppression of the cancer.15

Neoadjuvant therapy is any systemic treatment that is delivered before surgery with the goal of providing immediate treatment and reducing the size of the cancer for easier resection. Neoadjuvant chemotherapy reduces the time to cancer recurrence and improves overall survival in patients with NSCLC.7 Neoadjuvant immunotherapy also appears effective. The CheckMate -816 clinical trial demonstrated benefit with an immune checkpoint inhibitor in combination with chemotherapy as a neoadjuvant treatment in select patients with resectable NSCLC.15 Patients should discuss the pros and cons of neoadjuvant compared to adjuvant systemic therapy with their physician.

Radiation Therapy

Some patients with lung cancer are not able to undergo the surgery to remove their cancer. Advanced age and other medical conditions such as heart disease and diminished lung capacity make it more difficult for these patients to withstand surgery. For these patients, staging of their cancer may be relatively precise using newer scanning techniques, including positron emission tomography (PET) and they are often offered radiation therapy as treatment for their cancer.

Two studies have demonstrated that patients with early stage NSCLC who are not able to, or do not wish to undergo surgery may be treated with radiation therapy alone. One of these was an extensive review of the literature since the mid-1980’s and the other was a recently conducted clinical trial that evaluated the use of radiation administered twice-daily for approximately 5 weeks. Results indicated that radiation therapy alone produced an average survival time of over 30 and 34 months, respectively.4,5

Treatment Follow-up

Although patients with NSCLC have a relatively high rate of long-term survival following treatment some patients are still at risk for developing a cancer recurrence, and others may still develop another lung cancer if lifestyle or other factors that increase their risk of developing cancer have not been changed. Researchers have been evaluating different screening methods and schedules for these patients in order to detect recurrent or second cancers early, when they are most treatable.

Researchers from the City of Hope National Medical Center recently determined that annual CT scans and chest x-rays three times per year may detect early second cancers in patients with previously treated NSCLC who appeared to be cured.8

References


1 The International Adjuvant Lung Trial Collaborative Group. Cisplatin-based adjuvant chemotherapy in patients with completely resected Non-Small Cell Lung Cancer. New England Journal of Medicine. 2004;350:351-360.

2 Kato H, Ichinose Y, Ohta M, et al. A randomized trial of adjuvant chemotherapy with uracil-tegafur for adenocarcinoma of the lung. New England Journal of Medicine. 2004;350(17):1713-21.

3 Gajra A, Newman N, Gamble G, et al. Effect of number of lymph nodes sampled on outcome in patients with Stage II non-small-cell lung cancer. Journal of Clinical Oncology 2003;21:1029-1034.

4 Jeremic B, Calssen J, Bamberg M. Radiotherapy alone in technically operable, medically inoperable, early-stage (I/II) non-small-cell lung cancer. International Journal of Radiation Oncology, Biology, Physics2002;54:119.

5 Jeremic B, Calssen J, Bamberg M. Radiotherapy alone in technically operable, medically inoperable, early-stage (I/II) non-small-cell lung cancer. International Journal of Radiation Oncology, Biology, Physics2002;54:119.

6 Strauss GM, Herndon J, Maddaus MA, et al. Randomized clinical trial of adjuvant chemotherapy with paclitaxel and carboplatin following resection in Stage IB non-small cell lung cancer: Report of Cancer and Leukemia Group B (CALGB) Protocol 9633. Journal of Clinical Oncology. 2004;22:Suppl 14S: Abstract #7019.

7 NSCLC Meta-analysis Collaborative Group. Preoperative chemotherapy for non-small cell lung cancer: a systematic review and meta-analysis of individual participant data. The Lancet. Published early online February 25, 2014. doi:10.1016/S0140-6736(13)62159-5

8 Lamong J, Kakuda J, Smith D, et al. Systematic postoperative radiologic follow-up in patients with non-small cell lung cancer for detecting second primary lung cancer in stage IA. Archives of Surgery2002;137:935-939.

9 Zhou C, Wu Y-L, Chen G et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): A multicentre, open-label, randomized, phase 3 study. Lancet Oncology. Early online publication July 22, 2011.

10 OSI Pharmaceuticals. FDA Approves Tarceva as a Maintenance Therapy for Advanced Non-small Cell Lung Cancer. Available at: investor.osip.com/releasedetail.cfm?ReleaseID=460783. Accessed April 19, 2010.

11 Shaw AT, Kim DW, Mehra R, et al: Ceritinib in ALK-rearranged non–small-cell lung cancer. New England Journal of Medicine. 2014; 370: 1189-1197.

12 Kwak EL, Bang Y-J, Camidge DR et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. New England Journal of Medicine. 2010;363:1693-1703.

13 Randomized controlled phase III trial of adjuvant chemoimmunotherapy to lung cancer patients: Results of malignant effusions. Presented at: IASLC 2019 World Conference on Lung Cancer hosted by the International Association for the Study of Lung Cancer; September 7-10, 2019; Barcelona, Spain. Abstract P1.04-08.

14 Tagrisso – First Precision Medicine Approved for Treatment of Early Stage NSCLC

15 Opdivo (nivolumab) Plus Chemotherapy Shows Statistically Significant Improvement in Pathologic Complete Response as Neoadjuvant Treatment of Resectable Non-Small Cell Lung Cancer in Phase 3 CheckMate-816 Trial [news release]. Princeton, NJ. Published October 7, 2020. Accessed October 7, 2020.

Copyright © 2020 CancerConnect. All Rights Reserved.